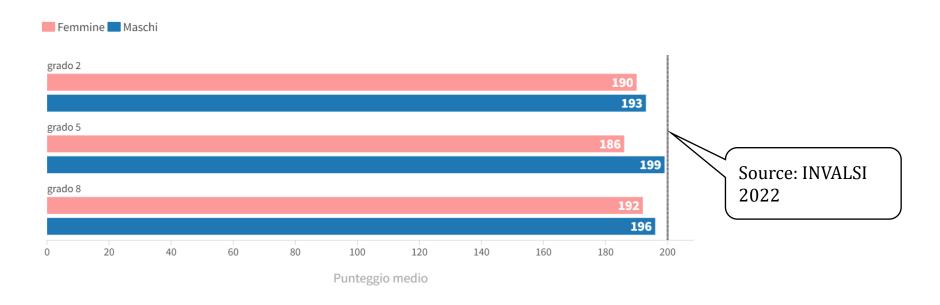


Exploring the Influence of Maternal and Teacher Role Models on Gender Differences in Mathematics Alice Bertoletti*


Joint Research Centre, Seville 41092, Spain

IX Seminar "Data of and for the educational system: tools for research and teaching" Rome, 17-18-19 October 2024

Motivation & Reference Literature (1/3)

- Italy exhibits a notable **gender gap in mathematics**, in disfavor of girls, ranking among the highest in Europe (Contini et al., 2017).
- The underperformance in math significantly **influences the career choices** of girls, contributing to a reduced interest towards STEM careers (Cheryan et al., 2017; Stoet & Geary, 2018).
- The gender disparity in math performance **emerges early**, at grade 2, and **persists consistently** throughout students' academic careers (INVALSI, 2022).

Motivation & Reference Literature (2/3)

ROLE MODEL

"A role model is a person you respect, follow, look up to or want to be like"

(Bricheno & Thornton, 2007)

- Role models (RM) could serve as a powerful policy tool to mitigate (gender) inequality in education, especially in in countries with significant STEM disparities (de Gendre et al., 2023).
- Female role models in scientific fields **reduced stereotypical** views on jobs in science and increased the likelihood of girls enrolling in **STEM** programs (Breda, 2023).
- Two main role models for students are identified in the literature: Mothers, and Teacher.

Motivation & Reference Literature (3/3)

(1) RM mothers

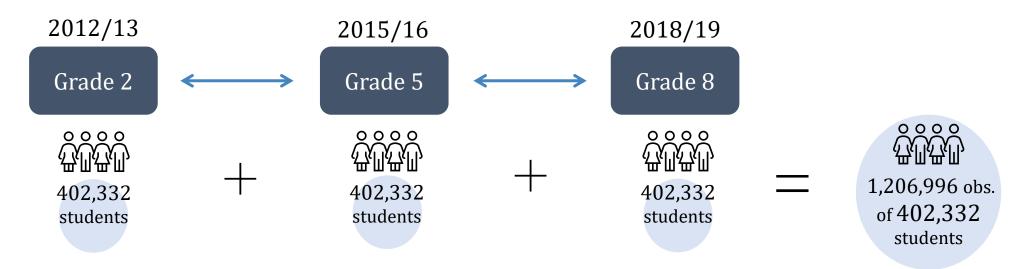
- In the UK, **60% of students** view their **relatives as role models**, with girls often identifying female relatives, and boys emphasizing the importance of fathers over mothers (Bricheno, P., & Thornton, M., 2007).
- The **entrepreneurial interests of girls** are notably influenced by having an **entrepreneurial parent**, whereas this influence is comparatively less pronounced for boys (Kickul et al., 2008).
- **Mothers**, serving as influential figures, can play a pivotal role in shaping their **daughters' self-efficacy** and interests. This influence can manifest in both passive and active ways (Kestilä-Kekkonen et al., 2023).

(2) RM same sex teachers

- Positive influence of **female instructors** encouraging **girls to choose STEM** courses, supporting a potential role-model effect (Bettinger & Long, 2005; Gendre et al., 2023).
- The effect on educational achievement seems limited:
 - The effect of same sex teachers on standardised test scores is 0.015 SD in the multi-country study 3 millions students in primary and secondary schools across six continents (de Gendre et al., 2023).
 - In the UK middle and elementary schools, only **6% of students** see teachers as role model, even if is larger for girls than boys (Bricheno & Thornton, 2007).

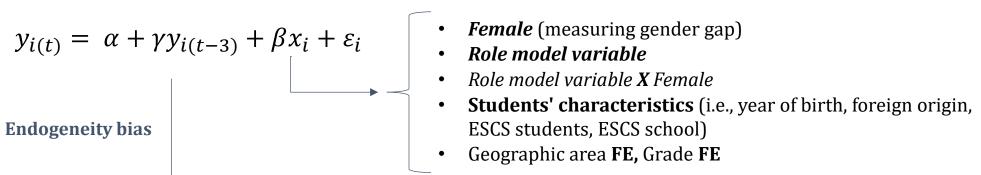
Research questions

The paper analyses the influence of **female role models** in explaining and mitigating the **gender gap** in mathematical achievement of Italian students.


- 1. What is the extent of the **gender gap** along the students' careers?
- 2. How do **female role models (mothers and teachers)** are effective in mitigating the gender gap in mathematics in disfavour of girls?

1st Step. Gender Gap & Mothers' role models

Data – 1st step


- INVALSI data: standardised test scores in math + demographic information of students and their family.
- Students' scores have been standardised to have mean of 0 and a SD of 1.
- Balanced panel data from 2012 to 2018 (pre-pandemic period).
- We follow the **same cohort of students** over grades (the approach can be replicated for additional cohorts).

Empirical model - 1st step

Dynamic panel model, including the past performance of the students

- Geographic area FE, Grade FE
- > **IV approach**: using the **month of birth** as instrumental variable, following Contini and Grand (2015) and Contini et al. (2017). → IV: Month of birth

(1)
$$y_{i(t-3)} = \pi + \rho x_i + \delta w_i + \epsilon_{i(t-3)}$$

(2)
$$y_t = \alpha + \gamma \hat{y}_{i(t-3)} + \beta x_i + \varepsilon_i$$

> **Younger** students have **lower achievement** than their older peers, especially in the early grades (e.g., Crowford et al. 2013; Lawlor et al. 2006), while later achievement should not depend on age given previous achievement (Contini and Grand, 2015).

Gender gap - 1st step (1/4)

• All grades: with grade dummies

	Full sample	Reduced sample	INVALSI sample	IV	Not dynamic
Female	-0.079***	-0.080***	-0.072***	-0.057***	-0.113***
	(0.002)	(0.007)	(800.0)	(0.003)	(0.002)
Past performance	0.471***	0.475***	0.450***	0.667***	-
	(0.001)	(0.004)	(0.004)	(0.019)	-
Controls	YES	YES	YES	YES	YES
Obs.	793,019	59,136	40,756	718,979	1,193,212
Number of students	401,726	29,967	20,623	364,602	401,782

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

- **By grade:** G5 using G2 as past performance and G8 using G5 as past performance.
 - Inverse probability weights for rebalancing the sample after longitudinal matching → 402,332 obs. out of 603,735 obs (i.e., 67%)
 - Inverse probability weights based on a **logit model that controls for**: student gender, standardised test scores in math, foreign origin, ESCS, geographical area.

Gender gap - 1st step (2/4)

• **By grade:** G5 using G2 as past performance and G8 using G5 as past performance.

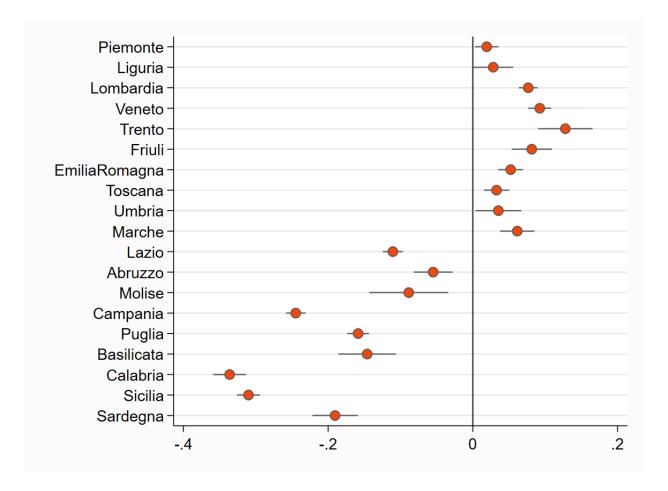
Grade 5 (with past performance Grade 2)

Ŋ
e
p
ra
5

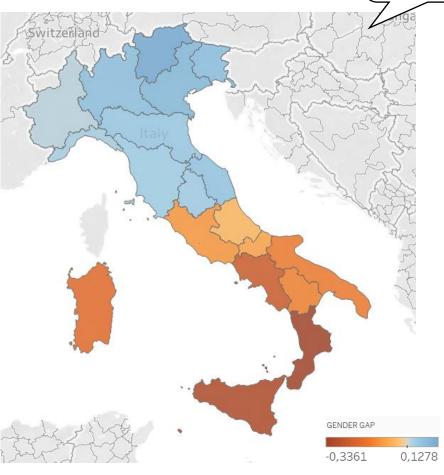
	Not dynamic	Dynamic	Dynamic + inv. weights	IV	IV + inv. weights
Female	-0.143***	-0.104***	-0.103***	-0.101***	-0.101***
	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
Past performance	-	0.507***	0.507***	0.567***	0.563***
	-	(0.001)	(0.001)	(0.017)	(0.017)
Obs.	400,750	400,750	400,750	363,058	363,058
Adj R-squared	0.055	0.299	0.302	0.058	0.061

Grade 8 (with past performance Grade 5)

Grade 8

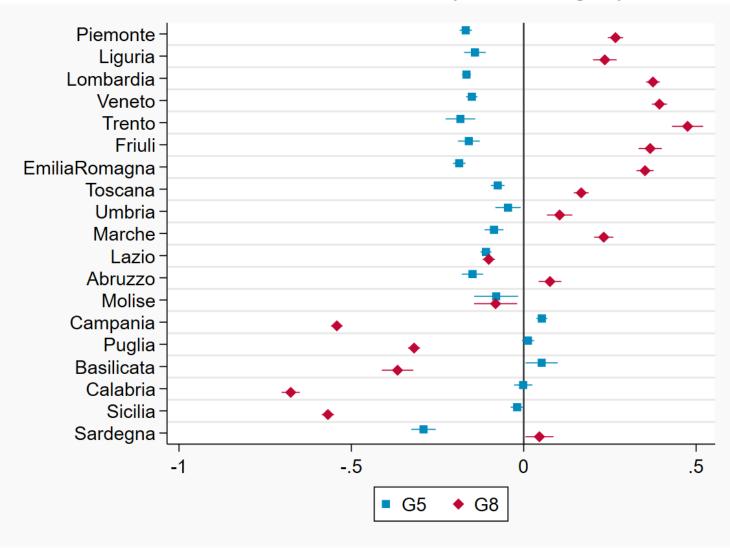

	Not dynamic	Dynamic	Dynamic + inv. weights	IV	IV + inv. weights
Female	-0.117***	-0.049***	-0.046***	0.009	0.009*
	(0.003)	(0.003)	(0.002)	(0.005)	(0.005)
Past performance	-	0.478***	0.479***	0.859***	0.856***
	-	(0.001)	(0.001)	(0.030)	(0.030)
Obs.	392,269	392,269	392,269	355,921	355,921
Adj R-squared	0.151	0.367	0.368	0.150	0.151

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1



Gender gap - 1^{st} step (3/4)

IV - all grades (Female X Region)


Gender gap - 1st step (4/4)

Full sample model gives very similar results

IV, Grade5 vs Grade8 (Female X Region)

Different trends between north and south accordingly to grades:

- North starts with significant gender gap penalising girls, recovering later.
- South has the opposite trend

Maternal role model (1/2)

How are Maternal Role Models measured?

(1) Mother's Employment status

- Maternal employment has been shown to positively influence daughters' employment behaviors (Milewski 2013).
- Measure (INVALSI data): Binary variable for working mother
 - **0**, Unemployed or housewife
 - **1**, Employed

(2) Mother's Education

- Maternal education (categorized into 6 levels) has a significant impact on students' math scores.
- However, no significant differences in this effect were found between male and female students.
- **Note:** Detailed results are omitted due to space constraints.

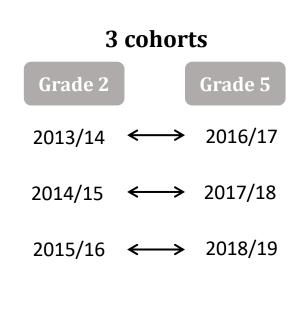
Maternal role model (2/2)

- **Girls are more negatively affected** by having a non-working mother in comparison to boys of around **0.03 SD**.
- The negative effect is **larger at grade 8**.
- The effect of working father is not statistically different between boys and girls.

Reference category: working mother=0 # female=0

	Full sample	IV - full	IV G8 + inv. weights	IV G8 + inv. weights
Working mother=0#female=1	-0.024***	-0.028***	-0.017***	-0.078***
	(0.003)	(0.004)	(0.005)	(0.005)
female	-0.055***	-0.015***	-0.052***	0.091***
	(0.003)	(0.005)	(0.005)	(0.006)
past_std_math	0.436***	0.672***	0.579***	0.863***
	(0.001)	(0.019)	(0.018)	(0.030)
Controls	YES	YES	YES	YES
Observations	741,045	672,636	316,715	355,921

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

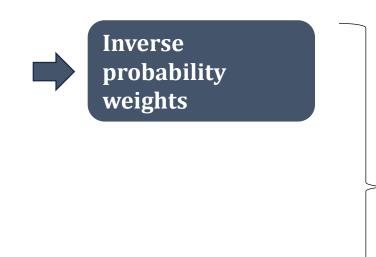

2nd Step. Teachers' role models

Data – 2nd Step

- **INVALSI data**: National population of **Students** + National representative sample of **Teachers**
- Focus on elementary schools to ensure better comparability across students in the same school environment
- Increase sample size by tracking **3 student cohorts** across grades, up to 2018/19 (pre-pandemic cohorts)

Addressing sample representativeness issues – 2nd Step

1. Reduction in observations due to longitudinal matching


- Around 25% of the observations are lost when anchoring the data between cohorts
- Teacher-student match is reliable, but **teacher** data is only available for a **nationally representative sample**.

2. Gender Disparity in Teachers

 There are significantly fewer male teachers compared to female teachers in elementary schools

Teacher Gender	G2	G5	Total	Total%
Male	208	224	432	5.8%
Female	3,370	3,664	7,034	94.2%

• Teacher changes between grades, which involve a gender change in the math teacher, affect **7% of the sample**

Propensity Score

weights

Combined

Gender gap – 2nd Step

- The gender gap is **consistently confirmed** across all three waves of data.
- Model: Dynamic model, with inverse probability weighting applied.
- **Control variables included:** student foreign origin, student ESCS, birth year, kindergarten attendance, geographical area

	Dynamic + inv. weights	Dynamic + inv. weights	Dynamic + inv. weights	Dynamic + inv. weights
	Tot waves	Wave 1	Wave 2	Wave 3
Female student	-0.155***	-0.153***	-0.125**	-0.161***
	(0.033)	(0.059)	(0.053)	(0.054)
past_std_math	0.530***	0.516***	0.554***	0.513***
	(0.020)	(0.039)	(0.030)	(0.031)
Controls	YES	YES	YES	YES
Observations	3,391	1,498	821	1,072
R-squared	0.358	0.348	0.453	0.324

Teachers' role model (1/4)

- Simple **cross-sectional** model for each grade (G2 and G5)
- Focus: Female students only.
- Methods: Propensity score matching based on: immigration status, school and student ESCS, student regularity, kindergarten attendance, wave, grade, and geographical area (north, center, south).

	GRADE 2	GRADE 5
	std_math	std_math
ATE (female vs male teacher)	0.189*	0.851
	(0.109)	(0.610)
Observations	1,770	1,678

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

Teachers' role model (2/4)

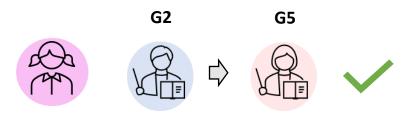
- Dynamic model using Doubly Robust Estimation (with and without IV) **considering female students only.**
- Combination of PSM weights and Inverse probability weights.
- **Propensity score matching** considers fixed variables & dynamic variables (student math score in grade 2, teacher gender in grade 2, and changes in teachers between grades 2 and 5).

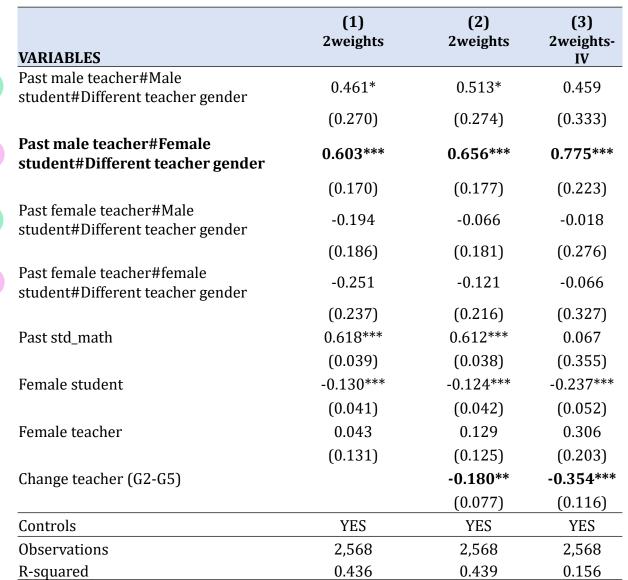
	PS	PS-IV	2weights	2weights-IV
Female teacher	0.441*	0.485*	0.526**	0.612**
	(0.225)	(0.293)	(0.207)	(0.289)
Past std_math	0.572***	-0.025	0.618***	-0.280
	(0.067)	(0.624)	(0.061)	(0.697)
Past female teacher (G2)	-0.190	-0.146	-0.220	-0.005
	(0.153)	(0.215)	(0.173)	(0.277)
Change teacher (G2 -G5)	0.174	0.131	0.240**	0.237
<u></u>	(0.113)	(0.137)	(0.116)	(0.170)
Controls	YES	YES	YES	YES
Observations	902	902	902	902
R-squared	0.404	0.178	0.438	0.167

Teachers' role model (3/4)

Interaction between teacher gender in G5 and teacher gender in G2, ESCS, past math performance - considering female students only.

G2	G5		(1) 2weights	(2) 2weights	(3) 2weights
		Past male teacher#Female teacher	0.953***		
			(0.243)		
		Past female teacher#Male teacher	-0.029		
			(0.263)		
		Past female teacher#Female teacher	0.456***		
			(0.171)		
Reference)	Female teacher#ESCS student		0.641***	
category: Past male teacher#				(0.107)	
Male teacher	J	Female teacher#Past std_math			-0.083
9 9					(0.123)
+		Female teacher		0.544***	0.513***
				(0.121)	(0.195)
		Past std_math	0.609***	0.593***	0.670***
			(0.064)	(0.048)	(0.124)
		Controls	YES	YES	YES
		Observations	902	902	902
		R-squared	0.441	0.536	0.440


Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1


Teachers' role model (4/4)

When is it beneficial to change to a teacher of a different gender?

- Analysis of the interaction between:
 - Student gender
 - Teacher gender in G2
 - Binary variable indicating a change to a different teacher gender in G5.
- Considering both female and male students.

Positive effect around 0.7 SD

Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

Conclusions

Gender gap

- Panel data and dynamic modeling play a crucial role in accurately assessing the gender gap in students' performance.
- The gender gap in math for Italian students exhibits significant variation across regions and grades (and their combination).

Female role models

- Maternal RM: the employment status of the mother (working vs not working)
 may significantly influence the math performance of female students.
- **Teacher RM: Female teachers** have an even greater impact on the math performance of female students, especially when considering the **teacher history** of the students.

References

- Bettinger, E. P., & Long, B. T. (2005). Do faculty serve as role models? The impact of instructor gender on female students. *American Economic Review*, 95(2), 152-157.
- Bricheno, P., & Thornton, M. (2007). Role model, hero or champion? Children's views concerning role models. *Educational research*, 49(4), 383-396.
- de Gendre, A., Feld, J., Salamanca, N., & Zölitz, U. (2023). Same-sex role model effects in education. *Working paper series/Department of Economics*, (438).
- Generationenvergleich. Zeitschrift Fur Familienforschung, 25(1), 53–74.
- Kestilä-Kekkonen, E., Sipinen, J., & Söderlund, P. (2023). Mummy's girls, daddy's boys: the gendered transmission of political engagement in families. *West European Politics*, 1-26.
- Kickul, J., Wilson, F., Marlino, D., & Barbosa, S. D. (2008). Are misalignments of perceptions and self-efficacy causing gender gaps in entrepreneurial intentions among our nation's teens?. *Journal of Small Business and Enterprise Development*, 15(2), 321-335.
- Milewski, N. (2013). Erwerbsbeteiligung und Einstellungen zur Familie von türkischen Migrantinnen im

Thank you

Comments and suggestions are welcome

Alice.BERTOLETTI@ec.europa.eu